Synthesis of 3-Methyl-4-substituted Butenolides Using Regioselective Reaction of Phenylsulfonylbutenolide

Hidemi YODA, Koji SHIRAKAWA, and Kunihiko TAKABE

Department of Applied Chemistry, Faculty of Engineering,
Shizuoka University, Hamamatsu 432

The anion of 4-phenylsulfonylbutenolide generated by deprotonation with lithium diisopropylamide reacted with a variety of electrophilic reagents regionselectively to afford 4-alkylated compounds, which were desulfurized in good yields to 4-substituted butenolides upon treatment with tri-n-butyltin hydride.

In recent years there has been considerable interest in the development of new processes for the synthesis of substituted butenolides because of their diverse biological activities¹⁾ and versatile utilization in the synthesis of natural products.²⁾ Although various routes to substituted butenolides have been established until now,³⁾ little attention has been given to the direct regionelective alkylations of this class of compounds.⁴⁾

As part of a program designed to explore the use of butenolide $(\underline{1})$, we have recently reported chemoselective alkylations of 4-hydroxybutenolides employing Grignard reagents. The purpose of this communication is to describe that by placing phenylsulfonyl group at the 4-position of $\underline{1}$ extremely high regionselective alkylation and normal allylation reactions could be accomplished.

Thus, 4-phenylsulfonyl-2-buten-4-olide ($\underline{2}$) was easily prepared by bromination of butenolide ($\underline{1}$) in CCl₄ followed by treatment with sodium benzenesulfinate in DMF in 60% yield. The anion of butenolide ($\underline{2}$) deprotonated with LDA in THF containing 2-5 equiv. of HMPA was treated with a variety of electrophiles and proved to react at the 4-position of $\underline{2}$ exclusively in moderate to high yields. Furthermore it should be noted that when the alkylated substances ($\underline{3}$) were refluxed in toluene for 2 h with 3 equiv. of Bu₃SnH in the presence of AIBN, the desulfonyiation reaction took place to afford cleanly 4-substituted butenolides ($\underline{4}$) in good yields. The results are listed in Table 1. Especially in the case

of the reactions with allylic halides these results offer the concise preparative opportunities for the synthesis of 4-allylated butenolides which could not be accomplished in the preceding report.⁵⁾

Chemistry Letters, 1989

Table 1.	Synthesis	οİ	4-Substituted	Butenolides

Entry	Electrophile ^{a)}	Temp °C	Yield of 3	b,c) Yield of 4
1	∕∕∕∕ Br	-78-r.t.	37	80
2	∕	-78-r.t.	46	75
3	Br	-78-0	59	80
4	CI	-78-r.t.	42	69
5	Br	-78-0	70	88
6	Br	-78-r.t.	84	72
7	Br	-78-r.t.	74	77

a) In the presence of 2-5 equiv. of HMPA. b) Isolated yield. c) Refluxed for 2 h with Bu₃SnH in toluene catalyzed by AIBN.

Application of this method leads to an efficient preparation of eldanolide (5)^{2c,8)} by reduction of 4 with magnesium in methanol⁹⁾ in 61% yield as shown in Scheme 2.

PhO₂S
$$\stackrel{1)}{\underset{2}{\bigcirc}}$$
 LDA $\stackrel{1)}{\underset{2}{\bigcirc}}$ PhO₂S $\stackrel{1)}{\underset{3}{\bigcirc}}$ Bu₃SnH $\stackrel{1)}{\underset{4}{\bigcirc}}$ $\stackrel{1)}{\underset{4}{\bigcirc}}$ $\stackrel{1)}{\underset{5}{\bigcirc}}$ $\stackrel{1)}{\underset{5}{\bigcirc}}$ $\stackrel{1)}{\underset{5}{\bigcirc}}$ $\stackrel{1)}{\underset{5}{\bigcirc}}$ $\stackrel{1)}{\underset{6}{\bigcirc}}$ $\stackrel{1)}{\underset{6}{\bigcirc}}$ $\stackrel{1)}{\underset{6}{\bigcirc}}$ $\stackrel{1)}{\underset{6}{\bigcirc}}$ $\stackrel{1)}{\underset{6}{\bigcirc}}$ $\stackrel{1)}{\underset{7}{\bigcirc}}$ $\stackrel{1)}{\underset{8}{\bigcirc}}$ $\stackrel{1)}{\underset{8}{\bigcirc}}$ $\stackrel{1)}{\underset{9}{\bigcirc}}$ $\stackrel{1}{\underset{9}{\bigcirc}}$ $\stackrel{1}{\underset{9}{\longrightarrow}}$ $\stackrel{1}$

The present study develops a mild and convenient method for the regioselective formation of 3-methyl-4-substituted butenolides and has a wide potential utility in the synthesis of natural products.

References

1392

- 1) C. W. Jefford, A. W. Sledeski, and J. Boukouvalas, J. Chem. Soc., Chem. Commun., 1988, 364; M. Pohmakotr and P. Jarupan, Tetrahedron Lett., 26, 2253(1985); R. Bloch and L. Gilbert, J. Org. Chem., <u>52</u>, 4603(1987).
- 2) a) S. Tsuboi, H. Wada, K. Muranaka, and A. Takeda, Bull. Chem. Soc. Jpn., 60, 2917(1987); b) J. L. Herrmann, M. H. Berger, and R. H. Schlessinger, J. Am. Chem. Soc., 101, 1544(1979); c) R. M. Ortuño, R. Mercé, and J. Fort,
- Tetrahedron Lett., 43, 4497(1987).

 3) For recent examples see: J. C. Carretero, S. De. Lombaert, and L. Ghosez, Tetrahedron Lett., 28, 2135(1987); R. Tanikaga, H. Yamashita, and A. Kaji, Synthesis, 1986, 416; K. Tanaka, H. Wakita, H. Yoda, and A. Kaji, Chem. Lett., 1984, 1359.
- 4) F. Fari \overline{na} and M. D. Parellada, J. Org. Chem., $\underline{53}$, 3330(1988), and references cited therein.
- 5) H. Yoda, M. Iwabuchi, A. Fukuyo, M. Tanaka, and K. Takabe, Chem. Express,
- 4, 165(1989).

 6) Although 4-phenylsulfenylbutenolide was also prepared and effected with prenyl bromide, the reaction afforded a mixture of 2-, 4-, 2,2-, and 2,4prenylated butenolides in 34, 11, 15, and 11% isolated yields, respectively.
- 7) The structures of all the products were characterized by spectral data.
- 8) Y. Yokoyama and M. Yunokihara, Chem. Lett., 1983, 1245.
 9) K. Tanaka, K. Ootake, K. Imai, N. Tanaka, and A. Kaji, Chem. Lett., 1983, 633; T. Hudlicky, G. Sinai-Zingde, and M. G. Natchus, Tetrahedron Lett., 28, 5287(1987).

(Received May 10, 1989)